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QCD vacuum in the magnetic field
Typically, critical B which modifies QCD vacuum eB ∼ m2

ρ, f2
π .

(Shushpanov-Smilga, Kabat et al, Miransky et al, Cohen et al)

In (or near) the chiral limit, the response is governed by chiral Lagrangian.

L =
f2

π

4
tr

h

∂µΣ∂µΣ† + 2m2
πΣ

i

; Σ = exp

„
iτaϕa

fπ

«

;

We shall look at a nontrivial solution — π0 domain wall:

π0 ≡ ϕ3 = 4fπ arctan emπz; ϕ1 = ϕ2 = 0;

which is unstable (“unwinding”). The spectrum of excitations has tachyonic branch:

E2 = k2
x + k2

y − 3m2
π .

This solution becomes metastable in the magnetic field B > B0:

E2 = (2n + 1)eB − 3m2
π, n = 0, 1, . . .

B0 =
3m2

π

e
≈ 1.0 × 1019

G,

∇π0

Can it become globally stable?
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Global stability at finite µB

The wall carries energy per unit area: E

S
= 8f2

πmπ.

But, for B 6= 0, it also carries baryon number!

The gauge invariant baryon current is given by
(Goldstone-Wilczek, Witten)

Jµ
B = −

ǫµναβ

24π2
tr

n

(LνLαLβ)−3ie∂ν [AαQ(Lβ + Rβ)]
o

,

where Lµ = Σ∂µΣ†, Rµ = ∂µΣ†Σ and Q = τ3/2 + 1/6.

JEM

JB

Jaxial

∼ ∂π0

π0 → γγ

For the wall, ∇π0 6= 0, in the magnetic field B:

J0
B =

e

4π2fπ

B · ∇π0; ⇒

NB

S
=

eB

2π
.

I.e., the wall is stable towards decay into vacuum when µB >
E

NB

=
16πf2

πmπ

eB
.

And if
B > B1 =

16πf2
πmπ

emN

≈ 1.1 × 1019
G

the wall wins over nuclear matter (µB ≈ mN ) in terms of E/NB .

B1 ∼ mπ ≫ B0 ∼ m2
π and both vanish in the chiral limit.
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Large µ and color superconductivity

Asymptotic freedom ⇒ αs(µ) → 0.

Quarks of “different color” (color antisymmetric
state) attract. Fermi sphere is unstable towards
condensation of quark pairs (Cooper). filledfilled p

s

−p

−s
For 2 flavors – 2SC: (Rapp et al, Alford et al, ’97)

〈uRdR〉 = 〈uLdL〉 6= 0

— flavor singlet ⇒ breaks U(1)A (not SU(2)A).

For 3 flavors — CFL: (Alford, Rajagopal, Wilczek)

〈uRdR〉 = 〈dRsR〉 = 〈sRuR〉 = (R → L) 6= 0

— flavor triplet and color triplet

SU(3)R × SU(3)
color

→ SU(3)R+color

SU(3)L × SU(3)
color

→ SU(3)L+color

ff

⇒ SU(3)R × SU(3)L → SU(3)L+R

Breaks both U(1)A and SU(3)A.
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Domain walls in 2SC and CFL

Spontaneously broken U(1)A and SU(3)A ⇒ Goldstone bosons.

Note: U(1)A violation by QCD anomaly is suppressed at large µ.

In 2SC and CFL: there are neutral axial Goldstone bosons.

The lightest is η in 2SC and η − η′ mixture (ss̄) in CFL.

Domain wall is energetically favorable state when E/NB < µ.

E ∼ f2
η mη ∼ µ2mη, NB ∼ eB;

Bc ∼
µmη

e
∼ 1017

|{z}

CFL

− 1018

|{z}

2SC

G
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Magnetism of the wall
Consider coupling of the Goldstone-Wilczek baryon current to the source

Aν = (µ,0):

LGW = −AB
ν Jν

B =
e

4π2fπ

µ B · ∇π0

This means the wall is magnetized with magnetization density (Son, Zhitnitsky, ’04)

M =
e

4π2fπ

µ∇π0.

If the wall is generated sponteneously, it will be ferromagnetic.
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Goldstone gradient (supercurrent)
Since it costs energy, how can a nonzero ∇π be spontaneously generated?

There is a coupling, ∇π · N†γ5γN , between the Goldstone gradient (axial
supercurrent) and nucleon axial current. If N†γ5γN was present, this could offset
the cost from f2

π(∇π)2.

In vacuum we would have to pay mN to create the
requisite nucleons.

In CFL quark excitations are also gapped. By ∆.

But finite ms lowers the energy cost of exciting a
fermion.
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When the excitation is close to being gapless,
one can lower the energy by creating supercurrent
j ∼ ∇φ:

Modes with

ε(p) = ε0(p) − j · p < 0 p

ε ε0(p)

occupied

j p

are occupied and contribute negatively to the energy due to the
supercurrent–normal current coupling. (In cold atoms: cond-mat/0507586).

Anomaly and Magnetism – p. 7/10



Narrow window of µ

As a function of j, the effective potential develops the second minimum:
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from Gerhold-Schafer-Kryjevski hep-ph/0612181

It is lower than j = 0 minimum only in a small interval of µs:

1.605∆ < µs < 1.615∆,

But in a neutron star µ changes and all one needs is this small interval to be
present somewhere in the full range of µ from surface to center.
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Ferromagnetism of CFL quark matter
If ∇φ is spontaneously generated at finite µ, the term eµB · ∇φ means there is

spontaneous magnetization.

M ∼ eµ∇φ

Such a ∇φ ∼ ∆ does occur in the “Goldstone current” (or “meson
supercurrent”) state in CFL. I.e., such a state is ferromagnetic.

M ∼
e

3π2
µ ∆ ≈ 2.4 · 1016

G ×
“ µ

1.5 GeV

” „
∆

30 MeV

«

Only a narrow window of µ (Gerhold-Schäfer-Kryjevski):

m2
s

2∆
(1.615)−1 <

µ

3
<

m2
s

2∆
(1.605)−1,

i.e., a shell in a star of width d ∼ 2%R. Then

B ∼ M
d

R
∼ 1014 − 1015

G.
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d

ferromagnetic
shell

star surface

Could account for the field of a magnetar.

Anomaly and Magnetism – p. 9/10



Summary

At B0 = 3m2
π/e the π0 domain wall becomes metastable.

The wall carries baryon number NB/S = eB/(2π) and competes with the
nuclear matter.

The wall wins at B > B1 ≈
16πf2

πmπ

emN

∼ 1019 G.

Both B1 and B0 vanish in the chiral limit.

In color superconducting quark matter η/η′ domain wall wins for
B ∼ 1017 − 1018 G.

The “meson supercurrent” state in CFL is ferromagnetic and capable of
producing B ∼ 1014 − 1015 G in a typical compact star.
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